Dr. Richard G. Barr, MD, PhD
Professor of Radiology
Northeastern Ohio Medical University
Editor-in-Chief Journal of Ultrasound in Medicine, Southwoods Imaging
Erin Kelly, PhD
Strategic Clinical Sciences Manager
CT/MR Solutions Planning Group
Canon Medical Systems Corporation
Brian Tymkiw, BS, R.T.(R)(MR)
Manager Medical Affairs-Clinical Development, MR
Canon Medical Systems USA, Inc.
Figure 1: Shows an axial T2W on the left and an axial T1W of the prostate on the right. The arrow indicates a tumor in the peripheral zone, which is visible on the T2W image, but not clear on the T1W image.
Figure 2: OLEA prostate Peak Enhancement map with a color overlay on this dynamic contrast image. The green arrow points out the tumor which correlates to the top graphs and curve, and the blue arrow indicates contralateral normal tissue with the bottom graphs and curve. The Peak Enhancement map represents the percentage of increase of the initial up-slope of the concentration-time curve.
Figure 3: OLEA prostate color maps/quantitative overlay shows tumor enhancement from the DCE acquisition. This is an example of the OLEA prostate Ktrans map overlayed on an axial T2W image. The yellow arrow indicates the tumor in the left peripheral zone.
Figure 4: DWI (left) and ADC (right) maps indicate the same tumor found in the peripheral zone.
Figure 5: A screenshot of the OLEA Medical Prostate post-processing solution. The green ROI is placed in the peripheral tumor and the blue ROI is placed in normal tissue that is selected for the reference ROI to provide ratio for comparison.
| Parameters | T2 FS | T1 | T2 | DWI | DCE |
| Imaging Technique | FSE | FSE | FSE | EPI | 3D GE |
| Plane | COR | Axial | Axial | Axial | Axial |
| TR | 4300 | 580 | 3363 | 6963 | 3.6 |
| TE | 63 | 8 | 120 | 90 | 1.3 |
| Slice Thickness | 5.0 mm | 3.0 mm | 3.0 mm | 3.0 mm | 3.0 mm |
| Gap | 1.0 mm | 0 mm | 0 mm | 0 mm | -1.5 mm |
| No Wrap | Yes | Yes | Yes | Yes | Yes |
| Matrix | 916 x 640 | 512 x 512 | 640 x 640 | 276 x 256 | 224 x 224 |
| Resolution | 2.2 x 0.9 | 0.4 x 0.4 mm | 0.3 x 0.3 mm | 0.9 x 0.9 mm | 0.8 x 0.8 mm |
| Slices | 27 | 30 | 30 | 29 | 48 |
| b-values | 100, 500, 1000, 1400 | ||||
| NAQ | 1 | 1 | 2 | 2 | 1 |
| AiCE1 | No | Yes | No | Yes | No |
| Acceleration2,3 | CS 1.5 | CS 1.6 | CS 1.9 | Exsper 2.0 |
Figure 6: Graphic interpretation of a standard RF system and Canon’s Multiphase RF Optimized for the patient in the magnet’s bore.
Figure 7: A 73-year-old male with Gleason 3+3=6, 60% of prostate involved in the targeted biopsy. In clockwise order starting on the top left are axial T2, b100, b1400, and post-contrast dynamic acquisitions.
Figure 7: A 73-year-old male with Gleason 3+3=6, 60% of prostate involved in the targeted biopsy. In clockwise order starting on the top left are axial T2, b100, b1400, and post-contrast dynamic acquisitions.
Figure 8: Images are acquired in a 72-year-old male with PSA 6.7, and two previous negative random biopsies. No PI-RADS 3 or higher lesion was identified. Therefore, the urologists continued to follow the patient instead of performing a third biopsy. The acquisitions shown in clockwise order starting on the top left are axial b1400, and T2W in axial, coronal, and sagittal planes.
Figure 8: Images are acquired in a 72-year-old male with PSA 6.7, and two previous negative random biopsies. No PI-RADS 3 or higher lesion was identified. Therefore, the urologists continued to follow the patient instead of performing a third biopsy. The acquisitions shown in clockwise order starting on the top left are axial b1400, and T2W in axial, coronal, and sagittal planes.
Figure 9: T2W Coronal of the prostate on the Orian 1.5T. The image on the right was reconstructed with AiCE DLR and shows an increased SNR and detail due to the noise reduction.
Figure 10: Shows prostate DWI images using Exsper with b0, b500, and b1400, respectively.
Figure 11: Example of prostate DWI with RDC and Exsper.
The clinical results, performance and views described in this paper are the experience of the authors. Actual results and performance of Canon Medical’s product may be materially different due to clinical setting, patient presentation, and other factors.
References
1. Key Statistics for Prostate Cancer | Prostate Cancer Facts. (2022). American Cancer Society. https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#:%7E:text=The%20American%20Cancer%20Society’s%20estimates,34%2C500%20deaths%20from%20prostate%20cancer
2. Verma, S., & Rajesh, A. (2011). A Clinically Relevant Approach to Imaging Prostate Cancer: Review. American Journal of Roentgenology, 196(3_supplement), S1–S10. https://doi.org/10.2214/ajr.09.7196
3. Mertan FV, Berman R, Szajek K, Pinto PA, Choyke PL, Turkbey B. Evaluating the Role of mpMRI in Prostate Cancer Assessment. Expert Rev Med Devices. 2016;13(2):129-41. doi: 10.1586/17434440.2016.1134311. Epub 2016 Jan 28. PMID: 26690507; PMCID: PMC6364697
4. Li L, Margolis DJ, Deng M, Cai J, Yuan L, Feng Z, Min X, Hu Z, Hu D, Liu J, Wang L. Correlation of gleason scores with magnetic resonance diffusion tensor imaging in peripheral zone prostate cancer. J Magn Reson Imaging. 2015 Aug;42(2):460-7. doi: 10.1002/jmri.24813. Epub 2014 Dec 3. PMID: 25469909.
5. J Magn Reson Imaging 2010 31(6):1387-94 Prostate cancer vs. post-biopsy hemorrhage diagnosis with T2- and diffusion-weighted imaging. Rosenkrantz AB, Kopec M, Kong X et. al.
6. George AK, Turkbey B, Valayil SG, Muthigi A, Mertan F, Kongnyuy M, Pinto PA. A urologist’s perspective on prostate cancer imaging: past, present, and future. Abdom Radiol (NY). 2016 May;41(5):805-16. doi: 10.1007/s00261-016-0751-6. PMID: 27138438; PMCID: PMC7815163.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815163/
7. Caglic I, Kovac V, Barrett T. Multiparametric MRI - local staging of prostate cancer and beyond. Radiol Oncol. 2019 May 8;53(2):159-170. doi: 10.2478/raon-2019-0021. PMID: 31103999; PMCID: PMC6572496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572496/
8. Verma, S., Turkbey, B., Muradyan, N., Rajesh, A., Cornud, F., Haider, M. A., Choyke, P. L., & Harisinghani, M. (2012). Overview of Dynamic Contrast-Enhanced MRI in Prostate Cancer Diagnosis and Management. American Journal of Roentgenology, 198(6), 1277–1288. https://doi.org/10.2214/ajr.12.8510
9. Türkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010 Sep;16(3):186-92. doi: 10.4261/1305-3825.DIR.2537-08.1. Epub 2009 Nov 2. PMID: 19885783; PMCID: PMC3518910.
10. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol. 2012 Jun;198(6):1277-88. doi: 10.2214/AJR.12.8510. PMID: 22623539; PMCID: PMC6309691.
11. Le Bihan D, Iima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS Biol. 2015 Jul 23;13(7):e1002203. doi: 10.1371/journal.pbio.1002203.Erratum in: PLoS Biol. 2015 Sep;13(9):e1002246. PMID: 26204162; PMCID: PMC4512706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512706/
12. The Clinical Value of Diffusion-Weighted Imaging in Combination With T2-Weighted Imaging in Diagnosing Prostate Carcinoma: A Systematic Review and Meta-Analysis Lian-Ming Wu, Jian-Rong Xu, Yong-Quan Ye, Qing Lu, and Jia-Ni Hu. American Journal of Roentgenology 2012 199:1, 103-110. https://www.ajronline.org/action/showCitFormats?doi=10.2214%2FAJR.11.7634
13. Luczyńska E, Heinze-Paluchowska S, Domalik A, Cwierz A, Kasperkiewicz H, Blecharz P, Jereczek-Fossa B. The Utility of Diffusion Weighted Imaging (DWI) Using Apparent Diffusion Coefficient (ADC) Values in Discriminating Between Prostate Cancer and Normal Tissue. Pol J Radiol. 2014 Dec 2;79:450-5. doi: 10.12659/PJR.890805. PMID: 25484999; PMCID: PMC4257483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257483/
14. Barrett, T., & Haider, M. A. (2017). The Emerging Role of MRI in Prostate Cancer Active Surveillance and Ongoing Challenges. American Journal of Roentgenology, 208(1), 131–139. https://doi.org/10.2214/ajr.16.16355
15. Tan CH, Wei W, Johnson V, Kundra V. Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol. 2012 Oct;199(4):822-9. doi: 10.2214/AJR.11.7805. PMID: 22997374; PMCID: PMC3888871.
16. Jacobs MA, Ouwerkerk R, Petrowski K, Macura KJ. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging. 2008 Dec;19(6):261-72. doi: 10.1097/RMR.0b013e3181aa6b50. PMID: 19512848; PMCID: PMC3110834. 17. Gibbs, P., Ph.D., Pickles, M. D., BHS, & Turnbull, L. W., MD. (2006). Diffusion Imaging of the Prostate at 3.0 Tesla. Investigative Radiology, 41(2). http://pfeifer.phas.ubc.ca/refbase/files/Gibbs-Investigativeradiology-2006-41-185.pdf
18. Turkbey B, Choyke PL. Multiparametric MRI and prostate cancer diagnosis and risk stratification. Curr Opin Urol. 2012 Jul;22(4):310-5. doi: 10.1097/MOU.0b013e32835481c2. PMID: 22617060; PMCID: PMC6309696. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6f309696/
19. PI-RADS Version 2.1: A Critical Review, From the AJR Special Series on Radiology Reporting and Data Systems Andrei S. Purysko, Ronaldo H. Baroni, Francesco Giganti, Daniel Costa, Raphaële Renard-Penna, Chan Kyo Kim, and Steven S. Raman. American Journal of Roentgenology 2021 216:1, 20-32. https://www.ajronline.org/action/showCitFormats?doi=10.2214%2FAJR.20.24495
20. Kim CK, Park BK, Kim B. Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. AJR Am J Roentgenol. 2010 Jun;194(6):1461-9. doi: 10.2214/AJR.09.3654. PMID: 20489084.
21. Do, Hung AiCE DLR: Translating the Power of Deep Learning to MR Image Reconstruction, [White Paper]
22. Cabarrus, M., & Westphalen, A. (2017). Multiparametric magnetic resonance imaging of the prostate—a basic tutorial. Translational Andrology And Urology, 6(3), 376-386. doi:10.21037/tau.2017.01.06
© CANON MEDICAL SYSTEMS MALAYSIA SDN. BHD.
© CANON MEDICAL SYSTEMS MALAYSIA SDN. BHD.